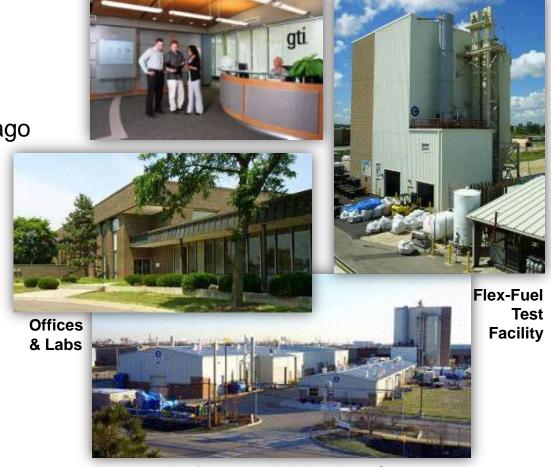
the Energy to Lead

GTI – Addressing Methane Emissions


Kiran Kothari and Jack Lewnard Gas Technology Institute

ARPA-E Emerging Ideas Workshop

March 29, 2012

GTI at a Glance...

- Not-for-profit research, with 70+ year history
- Facilities
 - 18 acre campus near Chicago
 - 200,000 ft²,
 28 specialized labs
 - Staff of 250; all fields of sscience and engineering
- \$60+ million in revenue
- >1200 patents
- >500 products/processes

Energy & Environmental Technology Center

Potential Dimensions to SNIFFER Problem Statement

"If I had an hour to solve a problem, I'd spend the first 55 minutes defining it"

Albert Einstein

> Detection

- Spatial Scale length, area
- Temporal chronic/acute; on-line/periodic/as-needed
- Intensity concentration range (ppb-%); total amount
- Discrimination/differentiation methane, bio-methane, natural gas

> Purpose

- Quantification emphasis on how much
- Remediation emphasis on source location

Which methane molecules are we targeting?

Natural gas one of many sources of atmospheric methane

Methane sources

•	Natural sources	145–260 Tg/a
	 Wetlands 	100-231
	Termites	20–29
	 Oceans 	4–15
	 Hydrates 	4–5
	 Geological sources 	4–14
	 Wild animals 	15
	 Wildfires 	2–5
•	Anthropogenic sources	264–428 Tg/a
	 Energy & industry (fossil fuels) 	74–106
	 Landfills & waste 	35–69
	 Ruminants 	76–92
	Rice agriculture	31–112
	 Biomass burning 	14–88
•	Total sources	503–610 Tg/a

Selected Past GTI Natural Gas Methane Emissions Studies

- "Unaccounted-for Gas" Studies for Sempra, PG&E, and California Energy Commission
 - 1990, 1993; 11 volumes
 - Intent was identification of causes; UAF 1.2%; "leaks" < 10% of UAF
- > GRI/EPA Methane Emission Study
 - 1994/96; 22 volumes
 - "National inventory", from well to burner tip, is 1.4+/-0.5%; half from T&D
 - "Emission factor" approach which have high uncertainty due to limited datasets
 - Outdated, but still basis for EPA GHG inventory and reporting rule
 - Need to evolve from "national" to "company-specific" data
- > Fugitive Emission Modeling at Wellhead
 - 1993 GRI/API Western wells, 50% of total wells; 90% of production
 - 1995 GRI Eastern wells, 50% of total wells; 10% of production
- > Tropospheric Methane Modeling

Defining the Problem: More Accurate Emissions Information

> GTI is:

- Developing a methodology for calculating methane emissions that will provide an increased level of accuracy
- Securing appropriate industry partners to provide the technical validation of these methodologies
- Coordinating work with AGA, EPA, and other appropriate stakeholders
- Method is based on leak measurements made at the surface using current technology, Hi-Flow Sampler
- > Emission estimates will be based on leak rates and company specific leak records

Identifying Solutions: Example Methane RD&D Projects

- > Commercial leak detection tools based on filtered infrared detection
 - > Optical Methane Detector
 - > Portable Methane Detector
 - > Ethane Detector
- > LLC Remote Leak Survey Tool
- > Isotopic Discrimination GYRO
- > MEMs Methane Sensor

Optical Methane Detector (OMDTM)

- >Optical system to improve leak survey speed
 - Gas distribution, transmission and gathering pipelines
- >OMD mounted on the front of a survey vehicle
 - Infrared-based technology; No moving parts
 - Specific to methane detection
 - 10,000 measurements per second
 - Sensitivity of 1ppm at 25 mph
- Commercially available through Heath Consultants

Portable Methane Detector (PMD)

- > Develop Portable Methane Detector based on optical method; Reduce size for walking survey/hand-held unit
- > Sensitive to methane detection only

> Dual low level (ppm) and high level (% gas) operation in one unit

> Commercially available through Sensit Technologies

Ethane-Only Detector: IR Ethane Detector (IRed)

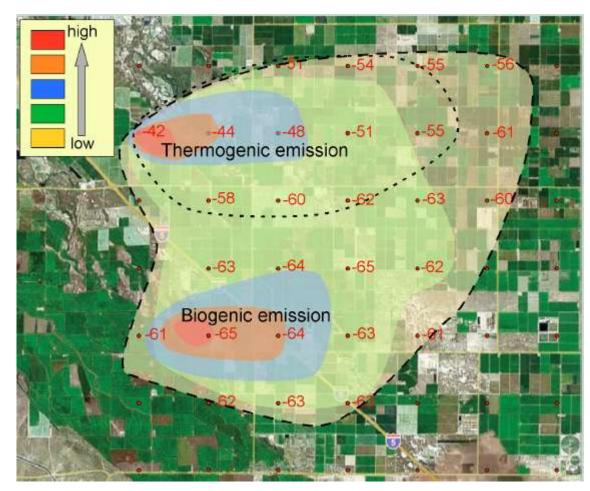
- Discriminate Natural Gas Leak from other sources of Methane
- > Portable instrument for field application
- > Detect 250-500 ppb ethane levels in small plumes (reading 20-50 ppm methane)
- > Based on and integrated with PMD platform
- > Will be commercially available through Sensit Technologies

Laser Line-scan Camera (LLC) Remote Leak Survey Tool

- > Originally conceived for aerial surveys of gas transmission pipelines
- > Benefits from significant advances in Naval Research Labs's interband cascade laser (ICL)
- > Completed and field tested prototype
 - 10 ppm sensitivity at a distance of 30 m
 - Vehicle motion up to 15 mph, potentially higher

GYRO – Measurement and Source Differentiation of Methane

- >GYRO: developed by Isometric Instruments
 - Demonstrated continuous field measurements of methane isotope ratios and concentrations with CEC
 - > Allowed for measurement and differentiation of various primary methane-emitting activities in California



Example – GYRO Sensor Grid for Detection and Discrimination

- > Fixed and mobile sensors
- Measure concentration and isotopes
- > Provide gross spatial resolution for further refinement

MEMS Methane Sensor

- > KWJ Engineering's Screen Printed
 Electrochemical (SPEC™) SENSOR and MEMS
 NanoSensor™ platforms
 - Robust (no drift, no calibration, no consumables)
 - Low power requirements (<35 mW)
 - Speed of Response (from sub millisecond)
 - Sensitivity (0.1%CH₄)
 - Selective (compensates for temperature and relative humidity)
 - Stability (>30 billion measurements)
- > Applications
 - > Residential Home Monitoring
 - > Smart Phone Integration

Suggested Next Steps

- >Define the problem
 - Methane, natural gas sources, etc
- >Identify the data/technology gap(s)
 - Better data for natural gas sources
 - Better instrumentation
 - Broader deployment/data gathering/system monitoring
- > Develop potential solutions

